Selected Publications

(for a complete list see here)

2024

Cola RB, Niethammer SN, Rajamannar P, Gresch A, Bhat MA, Assoumou K, Williams ET, Hauck P, Hartrampf N, Benke D, Stoeber M, Levkowitz G, Melzer S, Patriarchi T. (2024) Probing PAC1 receptor activation across species with an engineered sensor. eLife; doi: 10.7554/eLife.96496.1

Kockelkoren G, Carstensen J,  Lauritsen L, Kazepidou E, Tonnesen A, Shuttle CG,  Kaas PS, Gupta A, Breuer A, Rasmussen SGF, Duffet L, Warne T,  Patriarchi T, Tate CG,  Uline M,  Stamou D. (2024) Multimodal intrinsic activation of GPCRs in ultrastable plasma membrane nanodomains. BioRxiv; doi: 10.1101/2024.02.28.582451

Rohner V, Lamothe-Molina PJ, Patriarchi T. (2024) Engineering, applications, and future perspectives of GPCR‐based genetically encoded fluorescent indicators for neuromodulators. J Neurochem; doi: 10.1111/jnc.16045

Chen Y, Liu S, Jacobi AA, Jeng G, Ulrich JD, Stein IS, Patriarchi T, Hell JW. (2024) Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses. Front Synaptic Neurosci; doi: 10.3389/fnsyn.2024.1291262

Simpson EH*, Akam T*, Patriarchi T*, Blanco-Pozo M, Burgeno LM, Mohebi A, Cragg SJ, Walton ME. (2024) Lights, fiber, action! A primer on in vivo fiber photometry. Neuron; doi: 10.1016/j.neuron.2023.11.016f

2023

Kagiampaki Z, Rohner V, Kiss C, Curreli S, Dieter A, Wilhelm M, Harada M, Duss SN, Dernic J, Bhat MA, Zhou X, Ravotto L, Ziebarth T, Wasielewski LM, Sönmez L, Benke D, Weber B, Bohacek J, Reiner A, Wiegert JS, Fellin T, Patriarchi T. (2023) Sensitive multicolor indicators for monitoring norepinephrine in vivo. Nat Methods; doi: 10.1038/s41592-023-01959-z

Harada M, Capdevila LS, Wilhelm M, Burdakov D, Patriarchi T. (2023) Stimulation of VTA dopamine inputs to LH upregulates orexin neuronal activity in a DRD2-dependent manner. eLife; doi.org/10.7554/eLife.90158.1

Stuber A, Cavaccini A, Manole A, Burdina A, Massoud Y, Patriarchi T, Karayannis T, Nakatsuka N. (2023) Interfacing Aptamer-Modified Nanopipettes with Neuronal Media and Ex Vivo Brain Tissue. ACS Meas Sci Au; doi.org/10.1021/acsmeasuresciau.3c00047

Salinas AG, Lee JO, Augustin SM, Zhang S, Patriarchi T, Tian L, Morales M, Mateo Y, Lovinger DM. (2023) Distinct sub-second dopamine signaling in dorsolateral striatum measured by a genetically-encoded fluorescent sensor. Nat Commun; doi: 10.1038/s41467-023-41581-3

Zhou X, Stine C, Prada PO, Fusca D, Assoumou K, Dernic J, Bhat MA, Achanta AS, Johnson JC, Jadhav S, Bauder CA, Steuernagel L, Ravotto L, Benke D, Weber B, Stoeber M, Kloppenburg P, Brüning JC, Bruchas MR*, Patriarchi T*. (2023) Development of a genetically-encoded sensor for probing endogenous nociceptin opioid peptide release. BioRxiv; doi: 10.1101/2023.05.26.542102

Duffet L, Williams ET, Gresch A, Chen S, Bhat MA, Benke D, Hartrampf N*, Patriarchi T*. (2023) Optical tools for visualizing and controlling human GLP-1 receptor activation with high spatiotemporal resolution. eLife; doi: 10.7554/eLife.86628.1

2022

Duffet L, Tatarskiy PV, Harada M, Williams ET, Hartrampf N*, Patriarchi T*. (2022) A photocaged orexin-B for spatiotemporally precise control of orexin signaling. Cell Chem Bio; doi: 10.1016/j.chembiol.2022.11.007

Patriarchi T. (2022) New Technologies to Investigate Neuropeptides at Scale. ACS Chem Neurosci; doi: 10.1021/acschemneuro.2c00394

Herenbrink C.K., Støier J.F., Reith W.D., Dagra A., Gregorek M.A.C., Cola R.B., Patriarchi T., Li Y., Tian L., Gether U., Herborg F. (2022) Multimodal detection of dopamine by sniffer cells expressing genetically encoded fluorescent sensors. Commun Biol; doi: 10.1038/s42003-022-03488-5

Patriarchi T. & Beyeler A. (2022) State of the art imaging of neurotransmission in animal models. J Neurosci Methods; doi:10.1016/j.jneumeth.2022.109623 [Editorial]

Duffet L., Kosar S., Panniello M., Viberti B., Bracey E., Zych A.D., Radoux-Mergault A., Zhou X., Dernic J., Ravotto L., Tsai Y.-C., Figueiredo M., Tyagarajan S.K., Weber B., Stoeber M., Gogolla N., Schmidt M.H., Adamantidis A.R., Fellin T., Burdakov D., Patriarchi T. (2022) A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nat Methods; doi:10.1038/s41592-021-01390-2


2021

Copits B.A., Gowrishankar R., O’ Neill P.R., Li J.-N., Girven K.S., Yoo J.J., Meshik X., Parker K.E., Spangler S.M., Elerding A.J., Brown B.J., Shirley S.E., Ma K.K.L., Vasquez A.M., Stander M.C., Kalyanaraman V., Vogt S.K., Samineni V.K., Patriarchi T., Tian L., Gautam N., Sunahara R.K., Gereau IV R.W., Bruchas M.R. (2021) A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron; doi: 10.1016/j.neuron.2021.04.026

Labouesse M.A., Patriarchi T. (2021) A versatile GPCR toolkit to track in vivo neuromodulation: not a one-size-fits-all sensor. Neuropsychopharmacology; doi: 10.1038/s41386-021-00982-y

Lee S.J., Lodder B., Chen Y., Patriarchi T., Tian L., Sabatini B.L. (2021) Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature 2021; doi: 10.1038/s41586-020-03050-5




2020

Labouesse M.A., Cola R.B, Patriarchi T. (2020) GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for In vivo Imaging. Int. J. Mol. Sci. 2020, 21(21), 8048; doi: 10.3390/ijms21218048

Ravotto L., Duffet L., Zhou X., Weber B., Patriarchi T. (2020) A bright and colorful future for G-protein coupled receptor sensors. Front Cell Neurosci 14:67, doi: 10.3389/fncel.2020.00067

Patriarchi, T.*, Mohebi, A.*, Sun, J.* et al. (2020) An expanded palette of dopamine sensors for multiplex imaging in vivoNat Methods 1-9, doi: 10.1038/s41592-020-0936-3

Oe Y., Wang X., Patriarchi T., Konno A., Ozawa K., Yahagi K., Hirai H., Tian L., McHugh T.J., Hirase  H. (2020). Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nature Commun 11(1): 471

Graves SM, Xie Z, Stout KA, Zampese E, Burbulla LF, Shih JC, Kondapalli J, Patriarchi T, Tian L, Brichta L, Greengard P, Krainc D, Schumacker PT, Surmeier DJ. (2020). Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nat Neurosci 23(1):15-20




2019

Patriarchi T., Cho J.R., Merten K., Broussard G.J., Marley A., Liang R., Williams J.T., Nimmerjahn A., von Zastrow M., Gradinaru V., Tian L. (2019). Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators. Nature Protocols, 14(12):3471-3505

Robinson J.E., Coughlin G.M., Hori A.M., Cho J.R., Mackey E.D., Turan Z., Patriarchi T., Tian L., Gradinaru V. (2019). Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1. eLife (8):e48983

Mohebi A., Pettibone J.R., Hamid A.A., Wong J-M., Vinson L.T., Patriarchi T., Tian L., Kennedy R.T., Berke J.D. (2019). Dissociable dopamine dynamics for learning and motivation. Nature, 570: 65-70




2018

Patriarchi T.*, Cho J.R.*, Merten K., Howe M., Marley A., Xiong W.-H., Broussard J., Liang R., Jang M.J., Folk R., Zhong H., Dombeck D., von Zastrow M., Nimmerjahn A., Gradinaru V., Williams J.T., and Tian L. (2018). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 360 (6396) [F1000 Prime recommended (DOI: 10.3410/f.733321151.793546578)]

Corre J., van Zessen R., Loureiro M., Patriarchi T., Tian L., Pascoli V., Lüscher C. (2018). Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife 7:e39945

Patriarchi T.*, Shen A.*, Baikoghli M., Cheng R.H., Xiang Y.K., Coleman M.A., and Tian L. (2018). Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Sci Rep, 8(1): 3556

Patriarchi, T., Buonarati O. and Hell J.W. (2018). Postsynaptic localization and regulation of AMPA receptors and CaV1.2 by β2 adrenergic receptor/ PKA and Ca2+/CaMKII signaling. EMBO J, 37(20): e99771