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receptors and Cav1.2 by b2 adrenergic receptor/
PKA and Ca2+/CaMKII signaling
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Abstract

The synapse transmits, processes, and stores data within its tiny
space. Effective and specific signaling requires precise alignment
of the relevant components. This review examines current insights
into mechanisms of AMPAR and NMDAR localization by PSD-95 and
their spatial distribution at postsynaptic sites to illuminate the
structural and functional framework of postsynaptic signaling. It
subsequently delineates how b2 adrenergic receptor (b2 AR) signal-
ing via adenylyl cyclase and the cAMP-dependent protein kinase
PKA is organized within nanodomains. Here, we discuss targeting
of b2 AR, adenylyl cyclase, and PKA to defined signaling complexes
at postsynaptic sites, i.e., AMPARs and the L-type Ca2+ channel
Cav1.2, and other subcellular surface localizations, the role of
A kinase anchor proteins, the physiological relevance of the spatial
restriction of corresponding signaling, and their interplay with
signal transduction by the Ca2+- and calmodulin-dependent kinase
CaMKII. How localized and specific signaling by cAMP occurs is a
central cellular question. The dendritic spine constitutes an ideal
paradigm for elucidating the dimensions of spatially restricted
signaling because of their small size and defined protein
composition.
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Introduction

The mind-staggering capabilities of the brain depend on the

complexity of neuronal connections formed by ~1015 synapses.

Synapses not only transmit and process signals; they also constitute

the basic unit for information storage such as episodic memory or

motor skills utilizing different forms of synaptic plasticity such as

long-term potentiation (LTP—see Glossary) and long-term

depression (LTD). LTP is a permanent increase in the otherwise

remarkably stable synaptic strength following brief synaptic stimula-

tions at high frequency (1 s, 50–200 Hz), and LTD is a decrease

induced by longer synaptic stimulations at modest frequency

(Collingridge et al, 2004; Lisman & Hell et al, 2008; Sudhof &

Malenka, 2008; Kessels & Malinow, 2009; Huganir & Nicoll, 2013;

Morris, 2013). Furthermore, synapses decode and process signals in

a dynamically regulated manner. For instance, spine Na+ channels

amplify (Araya et al, 2007) and K+ channels dampen (Kim et al,

2007) postsynaptic excitation. Thus, the synapse integrates in its

minute space a large number of signaling mechanisms, constituting

a unique system for studying localized signaling.

Synaptic functions are modulated by various signaling pathways

such as the prominent b2 AR–PKA cascade (Lee et al, 2000; Oh

et al, 2006; Hu et al, 2007; Lu et al, 2007; Joiner et al, 2010;

Havekes et al, 2012; Qian et al, 2012, 2017; Murphy et al, 2014a;

Patriarchi et al, 2016). The widely studied PKA is exemplary for

localized signaling via formation of signaling complexes. It resides

in stable complexes with AMPARs (Rosenmund et al, 1994; Tavalin

et al, 2002; Joiner et al, 2010) and the L-type Ca2+ channel Cav1.2

(Davare et al, 1999; Balijepalli et al, 2006). Remarkably, these

AMPAR and Cav1.2 complexes also contain the b2 AR, trimeric Gs

protein, and adenylyl cyclase (AC), for highly localized regulation

via cAMP (Davare et al, 2001; Joiner et al, 2010; Wang et al, 2010).

PKA is important for many forms of learning and memory in the

broadest sense, which are as diverse as declarative and spatial

memory (Lee et al, 2003), fear conditioning (Hu et al, 2007) and its

reversal (Clem & Huganir, 2010; particularly relevant for posttrau-

matic stress disorder), drug addiction (Wolf & Tseng, 2012), and

plasticity of sensory maps (Fischer et al, 2004). The b2 AR is the

main postsynaptic mediator of signaling by norepinephrine (Joiner

et al, 2010; Qian et al, 2012, 2017; Patriarchi et al, 2016). Nore-

pinephrine is important for arousal, acuity of behavioral tasks, and

learning in novel and emotionally charged situations (Cahill et al,

1994; Berman & Dudai, 2001; Hu et al, 2007; Minzenberg et al,

2008; Carter et al, 2010; He et al, 2015).

After a thorough overview of the overall organization of the post-

synaptic site of glutamatergic synapses, this review will assess our

knowledge of the molecular details and spatial and functional
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aspects of the classical postsynaptic signaling by b2 AR–AC–PKA

pathways. The review will then contrast those pre-assembled path-

ways with signaling by CaMKII, which is recruited to postsynaptic

sites that experience heightened synaptic activity and Ca2+ influx

through the NMDAR. This Ca2+ influx and the ensuing activation of

CaMKII are absolutely critical for various forms of learning and LTP

(Collingridge et al, 2004; Lisman & Hell et al, 2008; Sudhof &

Malenka, 2008; Kessels & Malinow, 2009; Huganir & Nicoll, 2013;

Morris, 2013). We propose that the diffuse signaling by NE through-

out large brain regions by volume release sensitizes a broad

population of synapses to induction of synaptic plasticity during

alert states via preformed b2 AR complexes with AMPARs and

Cav1.2, whereas the activity-driven and highly specific recruitment

of CaMKII to a small number of individual synapses that experience

Ca2+ influx serves as the defining key step in the induction of LTP

at those selected synapses for storage of specific information such

as environmental maps or fear conditioning. Whether assembly of

signaling complexes is constitutive or induced, target association is

essential to minimize off target effects by cAMP, PKA, or CaMKII.

AMPARs and NMDARs

More than 80% of synapses in the cortex are glutamatergic

(Micheva et al, 2010). The AMPAR mediates most of the basal post-

synaptic response with the slower NMDAR contributing a smaller

fraction especially during the later part of an EPSP. AMPARs consist

of four homologous subunits (GluA1-4) (Traynelis et al, 2010).

Diheterotetrameric GluA1/2 receptors account for ~80% and GluA2/

3 receptors for most of the rest of postsynaptic AMPARs in forebrain

under basal conditions (Wenthold et al, 1996; Lu et al, 2009;

Traynelis et al, 2010; Fig 1). A minority of AMPARs consist of

GluA1 only, which plays a role during the early phase of LTP at certain

ages as well as LTD (see below). These AMPARs lack GluA2, which

acquires via RNA editing an Arg at a position within its pore that is

otherwise occupied by Gln in GluA1, GluA3, GluA4, and unedited

GluA2. The positive charge reduces single-channel conductance and

makes GluA2-containing AMPAR Ca2+-impermeable (CI-AMPARs).

GluA2-lacking AMPARs are Ca2+-permeable (CP-AMPARs).

Like AMPARs, the homologous NMDARs are tetramers, which

are formed by two GluN1 and two GluN2 subunits. One GluN1 and

four GluN2 (A-D) genes exist, with GluN1/2A and GluN1/2B being

the predominant isoforms in forebrain (Traynelis et al, 2010; Gray

et al, 2011). Whereas most AMPARs are mainly permeable for Na+

(and K+), NMDARs also conduct Ca2+ (Fig 1). AMPARs and

NMDARs are clustered at the postsynaptic density (PSD), a protein-

dense meshwork, and precisely juxtaposed to the presynaptic active

zone (Tang et al, 2016; Biederer et al, 2017) for fast and efficient

postsynaptic responses (Clements et al, 1992).

Postsynaptic Distribution of AMPARs and NMDARs

A typical PSD is 300–400 nm in diameter (Harris & Stevens, 1989;

Shepherd & Harris, 1998; Dani et al, 2010). It contains 30–150

AMPARs and 20–30 NMDARs according to immunogold EM (Nusser

et al, 1998; Tanaka et al, 2005; Fukazawa & Shigemoto, 2012), EM

tomography (Chen et al, 2008, 2015), electrophysiology (Bekkers &

Stevens, 1989; Spruston et al, 1995; Smith et al, 2003), glutamate

uncaging (Matsuzaki et al, 2001), and proteomic analysis of Triton

X-100-treated PSDs (Sheng & Hoogenraad, 2007). PSD size is line-

arly correlated with AMPAR (Takumi et al, 1999; Shinohara et al,

2008; Fukazawa & Shigemoto, 2012; Chen et al, 2015) but not

NMDAR content, which is fairly invariant between synapses of quite

different sizes (Takumi et al, 1999; Racca et al, 2000; Shinohara

et al, 2008; Chen et al, 2015). Because of the disproportional

content of Ca2+-permeable NMDARs, small spines have larger Ca2+

transients than large spines (Nimchinsky et al, 2004).

Glossary

AC adenylate cyclase
AKAP A kinase anchor protein
AMPAR a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptor; AMPA-type glutamate receptor
CaMKII Ca2+/calmodulin-dependent protein kinase II
Cav1.2 class C L-type Ca2+ channel
Cav1.3 class D L-type Ca2+ channel
CI-AMPAR Ca2+-impermeable AMPAR
CNIH2/3 cornichon homologues 2 and 3
CP-AMPAR Ca2+-permeable AMPAR
EPSP excitatory postsynaptic potential
GABA c-aminobutyric acid
GKAP guanylate kinase domain-associated protein (also known

as SAPAP)
GK guanylate kinase
GluA AMPA-type glutamate receptor subunit
GluN NMDA-type glutamate receptor subunit
GRK G protein-coupled receptor kinase
GsPCR Gs protein-coupled receptor
LTD long-term depression
LTP long-term potentiation
MAP2B microtubule-associated protein type 2B
mEPSC miniature excitatory postsynaptic current
mGluR metabotropic glutamate receptor
NFjB nuclear factor kappa-light-chain-enhancer of activated B

cells
NMDAR N-methyl-D-aspartate receptor; NMDA-type glutamate

receptor
PDZ PSD-95–discs large–zonula occludens homology domain
PFC prefrontal cortex
PKA cAMP-dependent protein kinase; protein kinase A
PKC protein kinase C
PP1 serine/threonine protein phosphatase 1
PP2B protein phosphatase 2B/calcineurin
PSD-93 postsynaptic density protein of 93 kDa
PSD-95 postsynaptic density protein of 95 kDa
PSD postsynaptic density
PTT-LTP prolonged theta tetanus-long-term potentiation
Pyk2 protein tyrosine kinase 2; Ca-dependent tyrosine kinase

(CADTK)
SAP102 synapse-associated protein of 102 kDa
SAP97 synapse-associated protein of 97 kDa
SAPAP synapse-associated protein–associated protein (also

known as GKAP)
SH3 Src homology domain 3
Src proto-oncogene tyrosine-protein kinase
STEP striatal-enriched protein tyrosine phosphatase
Stg stargazing (c2)
SynDIG1 synapse differentiation-induced gene 1
TARP transmembrane AMPAR regulatory protein
TNF tumor necrosis factor
c8 transmembrane AMPAR regulatory protein (TARP) c8
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AMPARs are ~24–27 nm and NMDARs ~30-32 nm apart when

measured center to center (Chen et al, 2008, 2015; Fig 2). NMDARs

tend to localize toward the PSD center when AMPAR density seems

to be skewed toward the periphery (Matsubara et al, 1996; Kharazia

& Weinberg, 1997; Petralia et al, 1998; Somogyi et al, 1998; Chen

et al, 2008, 2015) although some other work suggests a more

uniform distribution of AMPARs within the PSD (Nusser et al,

1994). AMPARs are concentrated in clusters of ~100 nm diameter,

together with PSD-95 and its binding partners GKAP, Shank, and

Homer (Fukata et al, 2013; MacGillavry et al, 2013; Nair et al,

2013; Sinnen et al, 2017). Localization of AMPARs in those

nanoclusters is thought to be functionally important because affinity

of AMPARs for glutamate is fairly low and only AMPARs that are

exactly juxtaposed to presynaptic release sites might be effectively

activated (Franks et al, 2003; Lisman & Raghavachari, 2006). In

fact, those nanoclusters appear to be closely aligned with presynap-

tic release sites for fast and efficient synaptic transmission (Tang

et al, 2016; Biederer et al, 2017; Hruska et al, 2018). New functional

evidence for this hypothesis has recently been provided by optoge-

netically induced binding of GluA1 to postsynaptic proteins (Sinnen

et al, 2017). Accordingly, optogenetic AMPAR recruitment to spines

did not augment the mEPSC amplitude in synapses that already

contained functional AMPAR (although it did induce AMPAR

responses in so-called silent synapses in which no AMPAR activity

was detected before light exposure). Glutamate uncaging, which

stimulates AMPARs over the whole surface of dendritic spines,

demonstrated that AMPARs were clearly increased on the spine

surface of synapses that did contain AMPAR before light applica-

tion, yet responses to presynaptic glutamate release were not.

Furthermore, stochastic optical reconstruction microscopy (STORM)

imaging showed that light-induced recruitment occurred into the

postsynaptic density, the postsynaptic site of glutamatergic

synapses. These results indicate that augmenting AMPAR content

on the spine surface is not sufficient for augmenting postsynaptic

response, thereby supporting the hypothesis that AMPARs must be

present near the presynaptic glutamate release sites for their effec-

tive activation (MacGillavry et al, 2013; Nair et al, 2013; Tang et al,

2016; Hruska et al, 2018). However, it still remains unclear whether

only AMPARs in those nanoclusters or AMPARs inside the PSD in

general are activated during regular synaptic transmission.

However, the PSD is not static. Some AMPARs in PSDs are basi-

cally immobile on a minute timescale and apparently fairly stably

anchored within PSDs (Tardin et al, 2003) especially when PSD-95 is

overexpressed (Kerr & Blanpied, 2012). Other AMPARs show modest

mobility within postsynaptic sites (Tardin et al, 2003). Extrasynaptic

AMPARs are highly mobile and can diffuse right through synaptic

sites (Tardin et al, 2003), but PDZ interactions between PSD-95 and

AMPAR complexes (see below) can trap AMPARs at postsynaptic

sites (Bats et al, 2007). More recent superresolution microscopy

shows that AMPARs are either confined to the nanodomains

described in the preceding paragraph with very low diffusion (pre-

sumably because they are anchored through protein interactions with

PSD-95 and its homologues) or diffuse seemingly freely in and out of

the nanodomains, apparently untethered (Nair et al, 2013). Some
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Figure 1. Postsynaptic AMPARs, NMDARs, and PSD-95.
AMPARs mostly consist of two GluA1 and two GluA2 subunits (blue) plus one or more TARP subunits (green). TARPs mediate postsynaptic localization by binding to PSD-95
(yellow) and its homologues, PSD-93, and SAP102, which contain three PDZ domains followed by an SH3 and a GK domain. NMDARs mostly consist of two GluN1 and two
GluN2A/2B subunits (purple); GluN2A/2B directly bind to PSD-93/PSD-95/SAP102. AMPARs are mainly Na+- and K+-permeable, whereas NMDARs also conduct Ca2+.
Postsynaptic anchoring of PSD-95 and some PSD-93 isoforms but not of SAP102 requires palmitoylation of their N-termini (depicted in zigzag), which fosters their interactions
with AMPARs and NMDARs. The C-terminal ESDV motif of GluN2A/2B has a higher affinity for PDZ1 and PDZ2 than the TTPV motif of TARPs.
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AMPARs can diffuse in and out of a nanodomain but become

temporarily confined inside the nanodomain (Nair et al, 2013).

Nevertheless, the majority of postsynaptic AMPARs can turn over

within minutes (Ashby et al, 2006) if not faster in hippocampal

cultures (Groc et al, 2004) as well as acute slices (Heine et al, 2008)

by lateral diffusion (Makino & Malinow, 2009), endocytosis, and

insertion into the plasma membrane via exocytosis (Lissin et al,

1999; Ehlers, 2000; Passafaro et al, 2001; Petrini et al, 2009). In fact,

in 40% of spines imaged by Nair et al (2013) showed nanodomains

that were not stable for more than 5 min.

Postsynaptic NMDARs turn over much more slowly, on the hour-

to-day timescale (Lissin et al, 1999; Tovar & Westbrook, 2002; Groc

et al, 2004). NMDAR clusters are 100–200 nm in diameter (Chen

et al, 2015; Hanamura et al, 2017; Ladepeche et al, 2018).

With respect to the overall dimensions of a synapse, it is notewor-

thy that spine volume and PSD size are strongly correlated with each

other (Harris & Stevens, 1989), with presynaptic volume, vesicle

content, and active zone size (Harris & Stevens, 1989; Schikorski &

Stevens, 1997), and with AMPAR content (Nusser et al, 1998;

Kharazia & Weinberg, 1999; Takumi et al, 1999). Spine size is also

well correlated with postsynaptic response strength as determined

by glutamate uncaging (Matsuzaki et al, 2001; Asrican et al, 2007;

Araya et al, 2014). During LTP, AMPAR content increases within 1–

2 min in parallel with spine size (Matsuzaki et al, 2004; Steiner et al,

2008; Zhang et al, 2008; Bosch et al, 2014) (see also Yang et al,

2008b) and F-actin (Fukazawa et al, 2003; Honkura et al, 2008;

Bosch et al, 2014) mediating a lasting increase in synaptic strength

(Collingridge et al, 2004; Lisman & Hell et al, 2008; Sudhof &

Malenka, 2008; Kessels & Malinow, 2009; Huganir & Nicoll, 2013).

Similarly, NMDAR-dependent LTD correlates with a decrease in

spine size and F-actin (Okamoto et al, 2004; Zhou et al, 2004) and

requires actin depolymerization (Wang et al, 2007).

Over time, F-actin defines not only spine size but also PSD size

and AMPAR content although it is unclear how F-actin does so, a

critical question for understanding synaptic strength and plasticity.

However, LTD but not spine shrinkage depends on the protein phos-

phatase PP1 and spine shrinkage but not LTD on slingshot or a

related phosphatase (Zhou et al, 2004; Wang et al, 2007),
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Figure 2. AMPAR and NMDAR dimensions and distribution at the postsynaptic site.
The extracellular N-termini of inactive AMPARs are V-shaped dimers of dimers and 14 nm high and 9 nm × 15 nm wide at the tip (Nakagawa et al, 2005; Sobolevsky et al,
2009). The transmembrane segment is ~5 nm long and 5–6 nm in diameter without TARPs (Nakagawa et al, 2006; Sobolevsky et al, 2009) and significantly wider with TARPs
(Nakagawa et al, 2005). The intracellular AMPAR C-termini in conjunction with C-termini of associated TARPs are 18–20 nm × 10–11 nmwide and 4–5 nm high (Chen et al,
2008, 2015). The extracellular N-termini of NMDARs are 11 nm high and 12 nm × 12.5 nm wide at the tip (Lee et al, 2014). The transmembrane segment is ~5 nm long and
4–6 nm wide (Lee et al, 2014). The C-termini of NMDARs are 17–20 nm × 13–14 nm wide and 13–16 nm high (Chen et al, 2008, 2015). The center-to-center distance is on
average 24 nm for AMPARs and 32 nm for NMDARs (Chen et al, 2008, 2015). The models are based on Nakagawa et al (2006).
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separating the two events and thereby potentially uncoupling synap-

tic strength and spine size though this uncoupling lasts likely only

for a limited time.

Postsynaptic AMPAR and NMDAR targeting by PSD-95

PSD-95 and its homologues PSD-93 and SAP102 are important for

postsynaptic AMPAR targeting (El-Husseini et al, 2000; Schnell

et al, 2002; Beique et al, 2006; Elias et al, 2006; Schluter et al, 2006;

Bats et al, 2007). There are roughly 300 PSD-95, 60 PSD-93, and 40

SAP102 in an average PSD (Sheng & Hoogenraad, 2007). The abun-

dance of SAP97, a fourth PSD-95 homologue linking PKA to GluA1

(see below), in PSD fractions is less certain as it is easily extracted

with Triton X-100 (Leonard et al, 1998), which is required for puri-

fying PSDs. SAP97 is likely not more abundant than PSD-93 or

SAP102 given its relatively low apparent synaptic enrichment by

immunofluorescence microscopy (Valtschanoff et al, 2000). PSD-95

in turn is localized to the synapse by a-actinin binding to the

N-terminus of PSD-95 (Matt et al, 2018a). Postsynaptic targeting of

PSD-95 also requires its palmitoylation of Cys3 and Cys5 near its

N-terminus (Craven et al, 1999; El-Husseini Ael et al, 2002).

a-Actinin binding to PSD-95 is not only important for the localiza-

tion of PSD-95 but also of a substantial fraction (~40%) of AMPARs.

Postsynaptic localization of most of the remaining AMPARs depends

on PSD-93 and SAP102 (Elias et al, 2006, 2008), which do not bind

to a-actinin and are anchored at postsynaptic sites independent of a-
actinin (Matt et al, 2018a). The estimated presence of ~400 mole-

cules PSD-95 and its homologues fits remarkably well with affinity

determinations for PDZ interactions specifically for the interaction

of the first two PDZ domains of PSD-95 with GluN2 subunits and

TARPs. The average spine volume is 0.062 � 0.08 lm3 (Harris &

Stevens, 1989). If 400 PSD-95 homologues are even distributed

throughout the spine, the concentration would be ~10 lM. Consis-

tently, Kd values for the higher affinity GluN2 subunits are ~1 lM,

whereas those for TARPs are in the range of 3–12 lM (Lim et al,

2002; Dakoji et al, 2003; Hafner et al, 2015; Pedersen et al, 2017).

Based on EM tomography, PSD-95 family members adopt an

extended conformation to form vertical filaments (~5 nm diameter)

that protrude from the PSD into the cytosol with their C-termini

being 20–30 nm away from the PSD (Chen et al, 2008, 2011, 2015;

Jeyifous et al, 2016) in agreement with immunogold EM localization

of GKAP (~25 nm) and Shank (~30 nm) (Valtschanoff & Weinberg,

2001), with GKAP binding to the C-terminal GK domain of PSD-95

and Shank to GKAP. Notably, isolated PSD-95 family members show

a C-shaped structure suggesting that its conformation can be regu-

lated to expand (Nakagawa et al, 2004). In fact, palmitoylation

induces an elongated shape of PSD-95, which is required for its

binding to AMPARs and NMDARs (Jeyifous et al, 2016). The PSD-

95 filaments are 13 nm apart (Chen et al, 2008, 2011) when

distances between AMPARs are ~27 nm and NMDARs ~30 nm

(Chen et al, 2015). Accordingly, the density of PSD-95 is higher than

that of AMPARs and NMDARs. This finding is in agreement with the

estimated PSD content of ~400 PSD-95 family members. If one

assumes that an average PSD contains 100 glutamate receptors and

one receptor associates with 2–4 PSD-95 family members, there

would likely be some surplus of PSD-95. Accordingly, PSD-95 might

associate with a limited number of postsynaptic protein complexes

that do not contain AMPARs or NMDARs. One prominent binding

partner is neuroligin, which augments synaptogenesis and func-

tional availability of postsynaptic AMPARs, although its PDZ inter-

action does not appear relevant for this function (Shipman et al,

2011).

Postsynaptic targeting of AMPARs depends on auxiliary subunits

known as TARPs with c2 (stargazin), c3, c4, and c8 being the main

isoforms (Chen et al, 2000; Jackson & Nicoll, 2011). CNIH2/3

(Schwenk et al, 2009; Herring et al, 2013), SynDIG1 (Kalashnikova

et al, 2010; Chenaux et al, 2016), and SynDIG4 (Prrt1) (Matt et al,

2018b) also promote synaptic AMPAR targeting, but their function

is not as well defined and could be limited to augmenting AMPAR

availability at extrasynaptic sites in the case of SynDIG4 (Matt et al,

2018b). TARPs bind with their very C-terminal ends to the first two

PDZ domains of PSD-95 and its homologues PSD-93 and SAP102 for

postsynaptic localization of AMPARs (Fig 1; El-Husseini et al, 2000;

Schnell et al, 2002; Beique et al, 2006; Elias et al, 2006; Schluter

et al, 2006; Bats et al, 2007). GluN2A and 2B bind directly with

their C-termini to these PDZ domains (Kornau et al, 1995) and

removal of PSD-95 and its homologues reduces excitatory postsy-

naptic currents (EPSCs) by NMDARs, suggesting that these scaffolds

contribute channel functional availability (Elias et al, 2006, 2008;

Ehrlich et al, 2007; Fig 1). However, PDZ interactions appear less

critical for postsynaptic availability of NMDARs than of AMPARs as

NMDAR EPSCs are less sensitive to a reduction in PSD-93/95 (Elias

et al, 2006, 2008; Schluter et al, 2006; Ehrlich et al, 2007; Matt et al,

2018a) or mutations that affect PDZ binding (Schnell et al, 2002;

Prybylowski et al, 2005). Nevertheless, acute disruption of PDZ

binding does strongly increase lateral mobility of synaptic NMDARs

(Bard et al, 2010), as it does increase diffusion of AMPARs (Sainlos

et al, 2011). Furthermore, under conditions under which the PSD-

93/PSD-95/SAP102 levels are more strongly reduced than by

combined knockdown of PSD-93/PSD-95, a decrease in postsynaptic

NMDAR function becomes obvious (Elias et al, 2006; Levy et al,

2015). Notably, GluN2A and 2B have much higher affinities for

PDZ1 and PDZ2 than TARPs (Lim et al, 2002). The ESDV sequence

at the C-termini of GluN2A and 2B subunits constitutes a nearly

optimal binding motif for those PDZ domains with Q or E being

desirable at the −3 position and D or E the −1 position in addition to

the previously established requirement of S/T at the −2 and V the 0

position (Lim et al, 2002; Zhu et al, 2016). The C-terminal TTPV

sequence of c2/3/4/8 is much less optimal; peptides mimicking the

last 11 residues of GluN2A and 2B, which contain the C-terminal

ESDV sequence, possess a Kd of ~1 lM for PDZ2 of PSD-95, whereas

peptides mimicking the last 10 residues of c2, which contain the C-

terminal TTPV sequence, have a Kd of ~12 lM (Lim et al, 2002;

Dakoji et al, 2003; Pedersen et al, 2017) although extending the

length of the c2 peptide decreases the Kd to 3.4 lM (Hafner et al,

2015). Thus, NMDARs will tie up available PSD-93/PSD-95/SAP102

before AMPARs have access. In other words, when the concentra-

tion of PSD-93/PSD-95/SAP102 is limited, a loss of postsynaptic

AMPAR function will first be observed before a loss of NMDAR

function.

In addition to potentially contributing to the direct anchoring of

NMDARs at postsynaptic sites, PSD-95 might more indirectly foster

postsynaptic content or functional availability of NMDARs by

recruiting regulatory proteins, as abrogating PSD-95 binding of

GluN2A decreases current density in HEK293 cells by more than
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10-fold without significantly affecting surface expression (Lin et al,

2004). For instance, Pyk2 binds to PSD-95 to augment postsynaptic

NMDAR function via Src during LTP (Huang et al, 2001; Bartos et al,

2010; Fig 3). Pyk2/Src might act in part by promoting phosphoryla-

tion of GluN2B on Y1472 (Yang et al, 2013), which impairs AP2

binding to this site and thereby NMDAR endocytosis (Roche et al,

2001; Prybylowski et al, 2005). As GluN2A does not share this endo-

cytic motif, its regulation by PSD-95 must utilize a different mecha-

nism that could potentially directly affect the channel activity of the

NMDAR (Lin et al, 2004). A role of PSD-95 in promoting AMPAR

trafficking to the postsynaptic site via b2 AR–PKA signaling in addi-

tion to AMPAR anchoring is discussed below.

Induction of LTP by multiple glutamate uncaging pulses, which

activate Ca2+ influx through NMDARs, increases spine size and

spine content of GluA1, F-actin (Matsuzaki et al, 2004; Honkura

et al, 2008), and especially its regulator cofilin within 1 min, but

total PSD-95 content of spines and PSD size do not start to signifi-

cantly increase before 1 h postinduction (Bosch et al, 2014; Meyer

et al, 2014). Thus, PSD expansion and recruitment of PSD-95 trail

far behind the recruitment of AMPARs. Either PSD-95 is not mediat-

ing the increase in postsynaptic AMPARs in the early phases of LTP,

or spare PSD-95 in the PSD (see above) does so by an increase in its

affinity for TARPs. Such an increase could translate into more pre-

existing PSD-95 molecules binding incoming AMPARs. In fact, phos-

phorylation of stargazin/c2 at its C-terminus by CaMKII at multiple

sites, which had been implicated earlier by Tomita et al (2005) in

LTP, detaches the otherwise positively charged C-terminus from the

plasma membrane for increased binding to PSD-95 and postsynaptic

AMPAR localization (Opazo et al, 2010; Sumioka et al, 2010; Hafner

et al, 2015). However, more recent work by Tomita and co-workers

suggests a role of CaMKII-mediated phosphorylation of c8 and not of

c2 in LTP, leaving open the question of whether and which TARPs

are truly the relevant CaMKII targets (Sumioka et al, 2011; Park

et al, 2016; Sheng et al, 2018).

Why does glutamate uncaging not increase postsynaptic PSD-95

content when spine size does go up? It appears that the glutamate-

induced Ca2+ influx triggers two antagonistic events. One leads to

actual net loss of PSD-95 from spines and the other to its accumula-

tion in spines. The net loss of PSD-95 upon Ca2+ influx is well

established; it is augmented by phosphorylation of PSD-95 on S73

within its first PDZ domain by CaMKII (Steiner et al, 2008) and on

T19 by GSK3b (Nelson et al, 2013). In addition, the loss depends on

Ca2+ influx-induced binding of Ca2+/CaM to the very N-terminus of

PSD-95 (Fig 4; Zhang et al, 2014). This interaction antagonizes

palmitoylation of PSD-95 on Cys3 and Cys5, which is required for

its postsynaptic localization and reversed upon NMDAR activation

(El-Husseini Ael et al, 2002; Zhang et al, 2014). Ca2+/CaM recruit-

ment to the PSD-95 N-terminus also displaces a-actinin (Matt et al,

2018a), which anchors PSD-95 at the postsynaptic site (Matt et al,

2018a). Mutating Tyr12 near the N-terminus of PSD-95 to Glu not

only abrogates Ca2+/CaM binding and with it loss of PSD-95(Y12E)

from spines but actually causes a substantial increase in postsynap-

tic accumulation of this PSD-95 mutant in spines upon Ca2+ influx.

This latter finding is remarkable as it shows that Ca2+ influx can

engage a mechanism that augments postsynaptic localization of

PSD-95, but for endogenous PSD-95, this mechanism is overridden

by the Ca2+/CaM-driven displacement of PSD-95 from spines. We

propose that the absence of postsynaptic PSD-95 accumulation

during the first hour following glutamate-induced spine LTP is at

least in part due to the Ca2+/CaM-mediated loss of PSD-95 from

spines, which curbs and effectively antagonizes the mechanism that

would otherwise lead to immediate increase in postsynaptic PSD-95.

Ca2+/CaM-induced displacement of PSD-95 from spines is also rele-

vant in homeostatic scaling down of the strength of all synapses in a

neuron in response to a chronic increase in its excitatory input

(Chowdhury et al, 2018).

Although the reason for the delay in the increased size of PSDs

and their PSD-95 content following LTP is unclear, this delay does

correlate with the finding that 1–2 h after saturating LTP by multiple

trains of stimuli, further LTP can be induced by additional stimuli

(e.g., Cao & Harris, 2014, and ref. therein). Perhaps delayed PSD-95

recruitment sets the stage for further LTP.
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Figure 3. Role of PSD-95-anchored Pyk2 in NMDAR function.
Ca2+ influx induces Pyk2 relocation to postsynaptic sites via Ca2+/CaM-
stimulated binding to the SH3 domain of PSD-95 (Bartos et al, 2010). At the same
time, Pyk2 trans-autophosphorylates on Y402 (Bartos et al, 2010), which creates
a binding site for the SH2 domain of Src. Src might be recruited to pY402 from the
N-terminus of PSD-95, which binds Src and modestly suppresses Src activity
(Kalia et al, 2006), or fromNADH dehydrogenase 2 (ND2), a Src-anchoring protein
in the NMDAR complex in addition to PSD-95 (Gingrich et al, 2004). Binding to
pY402 activates Src, which in turn phosphorylates Pyk2 on Y579 and Y580 located
in its activation loop to strongly augment Pyk2 activity (Park et al, 2004; Yang
et al, 2013). Src binding obviously protects pY402 from dephosphorylation, which
is mediated by STEP (Xu et al, 2012). In addition, Y402 phosphorylation can likely
be more effectively renewed by Pyk2 when phosphorylated by Src on Y579/Y580
for self-perpetuating activation of this Pyk2/Src complex as a form of molecular
memory (Bartos et al, 2010).
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Complex signaling within spines

PSDs harbor at least 50 kinases (Collins et al, 2006), and hundreds

of signaling mechanisms likely regulate postsynaptic functions

(Coba et al, 2009). For instance, at least 15 different Rho family

GEFs have been implicated in regulating spine size and morphology

by controlling F-actin (Penzes et al, 2008; Kiraly et al, 2010; Kim

et al, 2011). Such complexity enhances reliability of signaling as

paradigmatically shown for TNF–NFjB signaling in fibroblasts

(Cheong et al, 2011). It can explain why manipulations often lead to

effects that are small or difficult to reproduce as alternative mecha-

nisms can compensate. The best studied and perhaps most preva-

lent postsynaptic kinase signaling is by PKA and CaMKII, the focus

of the remainder of this article.

PKA: structure, regulation, and localization by AKAPs

PKA is a tetramer formed by two regulatory (R) and two catalytic

(C) subunits (Fig 5). Four genes encode RIa,b and RIIa,b and three

genes Ca,b,c (Taylor et al, 2012). R subunits homo-dimerize via

their N-terminal dimerization domains forming a four-helix crossing

bundle (Beene & Scott, 2007). C subunit activity is suppressed by a

pseudosubstrate segment on R, which binds to the catalytic site on

C and is released by cAMP (Brandon et al, 1997), although C does

not have to be fully released from R in order to catalyze phosphory-

lation as indicated by correlating full dissociation of C from R or

better a lack thereof with full enzymatic activity (Johnson et al,

1993; Yang et al, 1995). A recent publication seems to confirm these

earlier studies as both R and C co-immunoprecipitate with the A

kinase anchor protein AKAP5 from cell lysate prepared after strong

b-adrenergic stimulation of the cells (Smith et al, 2017). Yet, follow-

up work suggests that the co-immunoprecipitation is due to re-asso-

ciation of C with R upon cell lysis as cAMP becomes diluted

(Walker-Gray et al, 2017).

Phosphotransfer and substrate release is modestly fast for most

kinases (~500/s) (Zhou & Adams, 1997; Shaffer & Adams, 1999).

However, ADP release is very slow for PKA (~20/s) (Zhou &

Adams, 1997). The consequent low turnover number (<20/s)

confers special importance to association of PKA with substrate

proteins for effective phosphorylation of key targets and at the

same time helps avoid phosphorylation of unintended targets. RII

and to a lesser degree RI dimers are recruited to a number of

substrates by AKAPs (Beene & Scott, 2007; Dai et al, 2009). AKAPs

are a group of diverse and typically multifunctional scaffolding

proteins, which share an amphipathic helix that interacts with the
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Figure 4. Displacement of PSD-95 from postsynaptic sites by Ca2+/CaM.
Ca2+ influx via NMDARs likely stimulates depalmitoylation of PSD-95 by a hypothetical palmitoyl thioesterase (PTE). Binding of Ca2+/CaM to depalmitoylated PSD-95 will
prevent re-palmitoylation by a palmitoyl transferase (PAT). Lack of palmitoylation will reduce postsynaptic PSD-95 anchoring, leading to a loss of PSD-95 from postsynaptic
sites (Zhang et al, 2014). Ca2+/CaM also disrupts binding of PSD-95 to a-actinin, which anchors otherwise PSD-95 at postsynaptic sites (Matt et al, 2018a).
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four-helix bundle formed by the N-terminal dimerization regions of

two R subunits (Fig 5; Newlon et al, 2001).

Regulation of AMPARs by AKAP5-anchored PKA and PP2B
during various forms of synaptic plasticity

AKAP5 is the most prevalent AKAP at postsynaptic sites (Smith

et al, 2006; Lu et al, 2007; Tunquist et al, 2008; Weisenhaus et al,

2010). AKAP5 refers to human AKAP79 and rodent AKAP150,

which is much larger than AKAP79 due to the insert of 36 imperfect

octapeptide repeats of unknown function. A segment near the very

C-terminus of AKAP5 is the docking site for PKA RII subunits (Fig 5;

Carr et al, 1992; Murphy et al, 2014b). AKAP5 also anchors the

Ca2+/CaM-activated phosphatase calcineurin (PP2B). PP2B binds to

the PIAIIIT motif in the central AKAP5 region, a modification of the

PXIXIT motif used by other proteins to bind PP2B (Li et al, 2012).

The three N-terminal polybasic segments of AKAP5 can bind PKC,

Ca2+/CaM, F-actin, cadherin, and PIP2 and augment targeting of

AKAP5 to spines (Klauck et al, 1996; Dell’Acqua et al, 1998; Gomez

et al, 2002; Gorski et al, 2005; Tavalin, 2008; Patel et al, 2017;

Woolfrey et al, 2018). Further postsynaptic targeting occurs via

binding of the middle region of AKAP5 to the SH3 and GK domains

of PSD-95 and SAP97 (Colledge et al, 2000; Bhattacharyya et al,

2009; Nikandrova et al, 2010; Fig 6).

Like PSD-95 (see above; El-Husseini et al, 2000), AKAP5 is a

positive regulator of spine size and AMPAR content (Robertson

et al, 2009); this effect depends on AKAP5’s central domain, which

binds to PSD-95 (Robertson et al, 2009). Perhaps AKAP5 works in

conjunction with PSD-95 as part of a structural framework that

determines synaptic size and strength, possibly including GKAP,

Shank, and Homer (Sala et al, 2001; Baron et al, 2006). Consistent

with this notion, the increase in postsynaptic strengthen by PSD-95

expression requires its SH3-GK region (Xu et al, 2008) perhaps for

AKAP5 association (Robertson et al, 2009) although the SH3-GK

region binds other proteins such as GKAP and Pyk2, which could be

involved in spine enlargement (Sala et al, 2001; Bartos et al, 2010).

AKAP5 is linked to GluA1 via SAP97 (Colledge et al, 2000;

Tavalin et al, 2002; Bhattacharyya et al, 2009), which binds with

its first or second PDZ domain to the C-terminus of GluA1 (Fig 6;

Leonard et al, 1998; Cai et al, 2002). Additional, more indirect

association of AKAP5 with GluA1 could be via TARP-associated

PSD-95 and via the b2 AR (Dai et al, 2009), which directly binds to

AKAP5 and indirectly to GluA1 via PSD-95/TARP (6; Joiner et al,

2010).

SAP97-anchored AKAP5 recruits PKA and the antagonistic

PP2B to GluA1 for dynamic phosphorylation and dephosphoryla-

tion of S845 in the cytosolic C-terminus of GluA1 (Tavalin et al,

2002; Hoshi et al, 2005; Sanderson et al, 2012; Diering et al,

2014). S845 phosphorylation augments channel opening (Banke
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Figure 5. Overall structure and regulation of PKA.
The holoenzyme consists of two R and two C subunits. The catalytic center of the C subunit resides in the cleft between its N and C lobe. The N-termini of the R subunits homo-
dimerize by forming a four-helix bundle, which are followed by flexible linkers. The pseudosubstrate segment in each linker binds to the catalytic site of the C subunit to
suppress activity. cAMP binds with high cooperativity to two sites, CNBA and CNBB, on each R subunit to release the pseudosubstrate segment from the catalytic site. AKAP5
binds with an amphipathic a-helix to the four-helix bundle formed by the R subunits.

▸Figure 6. Schematic structure of AKAP5 and its complexes with AMPARs and Cav1.2.
(A) Overview of AKAP5 binding partners and their binding sites. Residue numbering refers to human AKAP79. The N-terminus is formed by three segments designated A, B, and
C. These segments are polybasic regions, each of which can bind to Ca2+/CaM and PIP2. In addition, PKC binds to A and adenylyl cyclases 5 and 6 (AC5/6) bind via their N-termini
to B. PP2B binds to a PIXIT-like motif near the center of AKAP5 and PKA to a motif that is about 20 residues upstream of the very C-terminus. Immediately downstream of the
PKA site is a leucine zipper-likemotif that binds to a leucine zipper-like motif near the C-terminus of the Cav1.2 a11.2 subunit. PSD-95 and SAP97 interact through their SH3 and
GK domains with a broad region in the center of AKAP5, which also binds to KV4.2. Other binding sites are less clearly defined. The two palmitoylation sites are identified by red
squares and the two known CaMKII phosphorylation sites by blue squares. (B) The b2 AR–AMPAR complex. AC binds to the N-terminus, PP2B to the middle region, and PKA to
the C-terminus of AKAP5, which is connected with AMPARs via SAP97, which binds to the very C-terminus of GluA1 (Leonard et al, 1998; Tavalin et al, 2002; Zhang et al, 2013).
The b2 AR binds to the third PDZ domain of PSD-95, which is linked to AMPARs via TARPs (c), which bind with their very C-termini to the second and, with lower affinity, also
first and third PDZ domains of PSD-95 (Hafner et al, 2015). PSD-95 might recruit a second AKAP5/PKA/PP2B complex. PKA and PP2B mediate phosphorylation and
dephosphorylation of S845 on GluA1, respectively. (C) The b2 AR directly binds to the C-terminus of a11.2. AKAP5 binds to three different regions as depicted (red arrows); the
leucine zipper-like segment near C-terminus of a11.2 also binds alternatively AKAP7. AKAP5 recruits PKA, PP2B, and likely ACs to the Cav1.2 complex.
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et al, 2000) and surface expression of GluA1 (Fig 7) (Sun et al,

2005; Gao et al, 2006; Oh et al, 2006; Man et al, 2007; Joiner

et al, 2010) especially in the perisynaptic space (Oh et al, 2006;

Yang et al, 2008a,b, 2010; He et al, 2009; Diering et al, 2014).

The perisynaptic space is functionally defined as containing

AMPARs that are activated upon presynaptic stimulation when

glutamate reuptake is inhibited so that a higher concentration of

glutamate can reach the space surrounding the postsynaptic site

upon presynaptic glutamate release. Recruitment of AMPARs to

this space provides a readily available reserve pool of AMPARs

for postsynaptic insertion during LTP and constitutes a form of

synaptic metaplasticity that fosters LTP (Esteban et al, 2003; Sun
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Figure 6.
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et al, 2005; Oh et al, 2006; Man et al, 2007; Yang et al, 2008a;

Qian et al, 2012; Diering et al, 2014). In fact, an extrasynaptic

surface pool of AMPARs is the only specific requirement for LTP

in replacement experiments in which endogenous GluA1, GluA2,

and GluA3 are all knocked out in individual neurons (Granger

et al, 2013). Accordingly, the abundance of receptors in this

reserve pool will determine, which receptors become incorporated

into the PSD during LTP. When all subunits are present, S845

phosphorylation appears to afford an advantage that might

become a necessity under certain conditions for activity-driven

insertion of GluA1 homomeric AMPARs as formed when GFP-

GluA1 is ectopically expressed (Esteban et al, 2003). However,

LTP is normal in S845A knock-in mice (Lee et al, 2010). The

discrepancy between these two papers can be explained by recent

findings that implicate the N-terminal domain of GluA1 as impor-

tant for its postsynaptic targeting and show that adding a tag

such as GFP as in Esteban et al (2003) impairs this targeting

(Diaz-Alonso et al, 2017; Watson et al, 2017). Accordingly, GFP-GluA1
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Figure 7. Two-step model of AMPAR surface trafficking and lateral diffusion to the postsynaptic site.
A significant portion of AMPARs are synthesized in the endoplasmic reticulum (ER) in dendrites possibly without TARPs, which might associate with the AMPAR core in a later
secretory compartment (e.g., recycling endosomes (REs)) or the plasma membrane (Bowen et al, 2017). Surface insertion via REs is promoted by intracellular norepinephrine
(NE) signaling, which is transported from the extracellular space via the OCT3 transporter first into the cytosol and then, as proposed here, into the lumen of REs, analogous to
NE transport into the Golgi apparatus (Irannejad et al, 2017). This NE transport enables intracellular stimulation of b2 ARs that are associated with GluA1 in RE analogous
stimulation of b2 ARs in endosomes (Tsvetanova & von Zastrow, 2014). The resulting S845 phosphorylation by PKA induces insertion of AMPARs into the perisynaptic
membrane via unknownmechanisms. From there, AMPARs laterally diffuse into the postsynaptic density, where they are trapped especially upon activation of CaMKII by Ca2+

influx via NMDARs.
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requires S845 to augment postsynaptic targeting when this target-

ing is impaired, while S845 is less important for postsynaptic

targeting of endogenous untagged GluA1.

In 2-week-old mice, GluA2-lacking CP-AMPARs (presumably

GluA1 homomers) are transiently postsynaptically inserted right

after induction of LTP (Plant et al, 2006) in a PKA- and AKAP5-

dependent manner (Lu et al, 2007; Sanderson et al, 2016). This

process is necessary for stabilization of LTP at 2 weeks of age (Plant

et al, 2006) especially when induced by minimal stimulation (Lu

et al, 2007; Sanderson et al, 2016). This process is not necessary for

LTP in 3- to 4-week-old mice (Lu et al, 2007; Sanderson et al, 2016)

but becomes necessary again at 8 weeks and older (Lu et al, 2007).

The presence of four versus two S845 residues in GluA1 homomers

versus GluA1/A2 diheteromers might be important for the tempo-

rary postsynaptic insertion of GluA1 homomers. In support of this

notion, the increase in postsynaptic AMPARs during homeostatic

synaptic plasticity upon chronic inhibition of neuronal activity or

specifically L-type Ca2+ channels or NMDARs is often (but not

always; see below) due to postsynaptic insertion of GluA1 homo-

meric CP-AMPARs (Thiagarajan et al, 2005; Sutton et al, 2006;

Soares et al, 2013; Kim & Ziff, 2014; Sanderson et al, 2018) and

requires S845 phosphorylation (Diering et al, 2014; Kim & Ziff,

2014) and anchoring of PKA by AKAP5, which is important for

phosphorylation of S845 (Sanderson et al, 2018). Because GluA2-

lacking CP-AMPARs including GluA1 homomers have a higher ion

channel conductance than GluA2-containing CI-AMPARs, their

insertion will immediately augment postsynaptic strength and also

mediate Ca2+ influx, which promotes synaptic homeostasis (Kim &

Ziff, 2014) and LTP under certain conditions (Plant et al, 2006; Lu

et al, 2007; Sanderson et al, 2016). In fact, recent work indicates

that blocking CP-AMPAR during the silencing phase also prevents

upscaling suggesting that this Ca2+ influx during this phase is

important in this process (Sanderson et al, 2018). However, other

work indicates that homeostatic synaptic upscaling depends on

GluA2 rather than GluA1 (Gainey et al, 2009, 2015; Goold & Nicoll,

2010; Tan et al, 2015; Ancona Esselmann et al, 2017) or does not

specifically require either GluA1 or GluA2 (Altimimi & Stellwagen,

2013), possibly reflecting differences in the precise neuronal

systems and signaling states within neurons between different labo-

ratories.

In contrast to Plant et al (2006), who described postsynaptic

insertion of CP-AMPARs right after LTP induction and their need for

LTP maintenance, Adesnik and Nicoll (2007) did not find such

evidence. Although both groups state that they used 2- to 3-week-

old mice, this discrepancy could be explained if the mice used by

Plant et al were actually closer to 2 weeks and those by Adesnik

et al closer to 3 weeks in their development as systematic compar-

isons of 12- to 14-day and 20- to 22-day old mice find that in the

younger but not older mice, CP-AMPARs are required for single

tetanus LTP (Lu et al, 2007; Sanderson et al, 2016).

Long-term depression, the flip side of LTP, can be induced by

two different mechanisms, prolonged Ca2+ influx via NMDARs

(Dudek & Bear, 1992) and activation of mGluR1/5 receptors

(Bolshakov & Siegelbaum, 1994; Oliet et al, 1997). NMDAR- but

not mGluR1/5-dependent LTD requires anchoring of PP2B by

SAP97/AKAP5 (Jurado et al, 2010; Sanderson et al, 2012, 2016).

Elimination of PP2B binding to AKAP5 or of AKAP5 to the SH3

domain of PSD-95 abrogates removal of AMPARs and PSD-95 from

spines during chemical LTD (Jurado et al, 2010; Sanderson et al,

2012). Furthermore, AKAP5-anchored PKA is required for transient

recruitment of CP-AMPARs during LTD and AKAP5-anchored

PP2B for subsequent removal of those CP-AMPARs (Sanderson

et al, 2016). Abrogating PKA binding to AKAP5 by deletion of the

PKA binding site on AKAP5 prevents the transient recruitment of

CP-AMPAR during the 1-Hz/15-min stimulation (Sanderson et al,

2016), and little to no change in synaptic strength occurs upon

this 1-Hz/15-min stimulation when the PKA binding site is deleted

from AKAP5 (Lu et al, 2008; Sanderson et al, 2016). In fact, PKA

has to be active during induction for LTD to occur (Lu et al,

2008). Abrogating PP2B binding to AKAP5 by deletion of the PP2B

binding site on AKAP5 does not affect the initial recruitment of

CP-AMPARs to the postsynaptic site but prevents the subsequent

removal of these CP-AMPARs presumably by impairing dephos-

phorylation of S845 in GluA1, which is important for LTD (Lee

et al, 2010). Due to the recruitment of CP-AMPARs during the

early phases of LTD induction and the failure of their removal,

LTP rather than LTD is observed in mice that lack the PP2B bind-

ing site in AKAP5 (Sanderson et al, 2016). Divergent findings

that suggest PKA anchoring by AKAP5 is not necessary for LTD

(Jurado et al, 2010) are likely explained by differences in the

developmental stages of the two systems with LTD requiring PKA

anchoring by AKAP5 at one stage as in Lu et al (2008) but not

the other stage as in Jurado et al (2010), analogous to the age

dependence of LTP on AKAP5-anchored PKA (Lu et al, 2007;

Sanderson et al, 2016). Finally, although deletion of the PKA

binding site in AKAP5 abrogated LTD, a full knockout of AKAP5

did not overtly affect LTD at 2 weeks of age (Weisenhaus et al,

2010). Perhaps complete removal of AKAP5 by knockout allowed

compensation by another AKAP such as AKAP12 (see below)

though the situation appears different at other ages where AKAP5

KD and KO did abolish LTD (Tunquist et al, 2008; Jurado et al,

2010).

Role of AKAP12 in postsynaptic signaling

AKAP12 (gravin, AKAP250, SSeCKS) is also required for several

forms of LTP (Havekes et al, 2012). These forms include theta burst

stimulation, which the authors find to depend on b2 AR signaling,

and LTP induced by a prolonged theta tetanus (PTT-LTP induced by

a 3-min-long 5-Hz tetanus, with a b AR agonist present; Havekes

et al, 2012), which also requires b2 AR signaling (Qian et al, 2012),

anchoring of AC and PKA by AKAP5 (Zhang et al, 2013), and S845

phosphorylation (Qian et al, 2012). The overall structural elements

of AKAP12 exhibit remarkable similarities to AKAP5: It binds with

N-terminal motifs to PKC and negatively charged phospholipids,

which is inhibited by CaM binding to this very region, with central

motifs to the b2 AR and PP2B, and with a C-terminal motif PKA

(Nauert et al, 1996; Shih et al, 1999; Tao et al, 2003; Dai et al,

2009; Havekes et al, 2012). Why both AKAP12 and AKAP5 are

required for PTT-LTP (Havekes et al, 2012; Zhang et al, 2013) and

what kinds of non-redundant roles these two AKAPs play in PTT-

LTP are unclear.

Loss of AKAP12 impairs several forms of learning including

spatial learning (Morris Water Maze), in contrast to the minimal

effect on the Morris Water Maze task from loss of AKAP5

ª 2018 The Authors The EMBO Journal 37: e99771 | 2018 11 of 24

Tommaso Patriarchi et al Postsynaptic nanodomains The EMBO Journal



(Weisenhaus et al, 2010), and fear conditioning (M. Zhang & J.W.

Hell, unpublished results). Tunquist et al (2008) report impaired

Morris Water Maze learning in a different strain of AKAP5 KO mice.

However, the AKAP5 KO mice still showed a tendency toward an

increase in the time spent in the target quadrant during test runs of

their memory. Although this increase was statistically not signifi-

cantly at the P = 0.05 level compared to other areas in the Morris

Water Maze, it is unclear whether the difference in the time spent in

the target quadrant was actually statistically different from the time

WT mice spent in the target quadrant. Whether memory retention is

affected in one of the two AKAP5 KO mouse strains in this test thus

remains unclear. Perhaps AKAP12 can compensate for loss of

AKAP5 but not vice versa in these tests pointing toward a unique

function of AKAP12 that remains to be revealed.

Binding of AKAP12 to the b2 AR is strongly increased upon PKA-

mediated phosphorylation of AKAP12 within its central, b2 AR bind-

ing motif (Tao et al, 2003), which is important for de- and re-sensiti-

zation of the b2 AR (Lin et al, 2000). This finding suggests that

recruitment of PKA by AKAP12 to the b2 AR could be activity driven

rather than a more static anchoring mechanism as seen for other

AKAPs. However, PKA binding to AKAP12 is required for phospho-

rylation of AKAP12 itself and the consequent increase in b2 AR.

Perhaps AKAP12 is an AKAP to stably anchor PKA for its own phos-

phorylation and PKA-driven binding of AKAP12 to the b2 AR serves

to recruit other binding partners such as PKC for b2 AR de- and re-

sensitization.

Potential role of the AKAP MAP2B in
postsynaptic signaling

The microtubule binding protein MAP2B also anchors PKA, consti-

tuting a bona fide AKAP. Work with a mutant mouse in which the

N-terminus of MAP2B, which anchors PKA, was deleted to prevent

PKA anchoring suggested that PKA anchored at microtubules in the

dendritic shaft is required for LTP (Zhong et al, 2009). Accordingly,

during LTP induction the catalytic subunit is released from MAP2B

to relocate into spines to support LTP, which is impaired in these

mice. However, it is possible that effects other than the loss of PKA

anchoring at microtubules are responsible for the loss of LTP as the

MAP2B deletion mouse has a dramatically altered cytoarchitecture

especially for apical dendritic arborization (Khuchua et al, 2003).

Thus, this mutation has a widespread pleiotropic effect that will

likely affect numerous neuronal functions, and conclusions about

any specific molecular effect or mechanism cannot readily be

drawn.

Localized signaling from the b2 AR to AMPARs

Although cAMP is a readily diffusible second messenger, signaling

downstream of GsPCRs, which act by stimulating adenylate cyclase

(AC) through Gs, such as b ARs, can have different effects for dif-

ferent GsPCR even within the same cell (Steinberg & Brunton, 2001;

Dai et al, 2009). Such differential effects require spatially restricted

signaling by cAMP (Steinberg & Brunton, 2001; Dai et al, 2009). The

discoveries of signaling complexes formed between the b2 AR and

two of its most prominent targets in the brain, the L-type Ca2+

channel Cav1.2 (Davare et al, 2001) and GluA1 subunit (Joiner et al,

2010) (see also Wang et al, 2010), that also contain Gs, AC, and

PKA thus constitute true milestones in defining cAMP signaling. In

detail, AKAP5 is linked together with AC, PKA, and the antagonistic

phosphatase PP2B via SAP97 to GluA1 (Fig 6B; Leonard et al, 1998;

Tavalin et al, 2002; Sanderson & Dell’Acqua, 2011; Zhang et al,

2013). The b2 AR is recruited to the AMPAR complex via its binding

to the third PDZ domain of PSD-95 (Joiner et al, 2010), which is

linked to AMPARs by binding with its second and potentially also

first and, possibly in AMPAR complexes not containing the b2 AR,

third PDZ domains to TARPs (Schnell et al, 2002; Hafner et al,

2015). The formation of this remarkable protein complex allows for

highly localized cAMP signaling within nanodomains, as illustrated

by the finding that only those GluA1 subunits that are part of b2 AR-
associated AMPARs become phosphorylated upon b AR stimulation,

with b2 AR-associated AMPARs accounting for likely much less than

20% of all AMPAR complexes (Joiner et al, 2010). Furthermore, the

increase in surface expression in cultured hippocampal neurons and

in postsynaptic AMPAR response in pyramidal neurons in the

prefrontal cortex upon b2 AR stimulation is blocked by disrupting

the b2 AR–AMPAR complex by two different peptides that interfere

with the b2 AR–PSD-95 and PSD-95–TARP interactions (Joiner et al,

2010). Accordingly, the b2 AR has to be associated with AMPARs

for their regulation.

A remarkable flip side to the localized stimulatory signaling from

the b2 AR to GluA1 is the localized inhibitory signaling at individual

synapses by the a2 AR and GABA B receptor, which are coupled to

the AC-inhibitory Gi protein (Lur & Higley, 2015). In layer 5 pyrami-

dal neurons in prefrontal cortex (PFC), activation of the a2 AR and

GABA B receptor specifically reduces synaptic transmission by

AMPARs and NMDARs, respectively, but not vice versa. This selec-

tivity within single postsynaptic sites is likely due to co-localization

of the a2 AR and GABA B receptor with the AMPAR and NMDAR,

respectively, such that Gi activated by the a2 AR or GABA B receptor

has only immediate access to the respective glutamate receptor

complexes. However, the cellular and molecular basis of this selec-

tivity is unclear except it requires the regulator of G protein signal-

ing RGS4, which limits the duration of Gi activation by promoting

their GTPase activity (Lur & Higley, 2015).

Regulation of synaptic AMPAR trafficking by b2
AR signaling

As detailed above, PKA drives AMPARs into the plasma membrane

and especially into the perisynaptic space through phosphorylation

of GluA1 on S845 to foster LTP (Fig 7) (Ehlers, 2000; Esteban et al,

2003; Sun et al, 2005; Gao et al, 2006; Oh et al, 2006; Man et al,

2007; Yang et al, 2008a,b, 2010; He et al, 2009; Joiner et al, 2010;

Diering et al, 2014). Consistently, several forms of LTP, and espe-

cially those mediated by weak stimulation paradigms, require cAMP

signaling and PKA for induction (Blitzer et al, 1995; Thomas et al,

1996; Gelinas & Nguyen, 2005; Lu et al, 2007; Qian et al, 2012,

2017). For instance, PTT-LTP is induced by a prolonged theta

tetanus (5 Hz, 3 min) but only when the b2 AR is stimulated (Qian

et al, 2012). Furthermore, PTT-LTP also requires anchoring of AC

and PKA by AKAP5 (Zhang et al, 2013), and S845 phosphorylation

(Qian et al, 2012).
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Precisely how PKA-mediated S845 phosphorylation augments

surface trafficking of AMPARs is still unclear. One important ques-

tion is how norepinephrine (NE), the main endogenous b AR

agonist in the brain, can control trafficking of AMPAR–b2 AR

complexes from inside neurons to the surface. Recent work shows

that NE is transported into the cell and from the cytosol into the

lumen of intracellular vesicles via the transporter OCT3, which

allows stimulation of b ARs inside cells (Tsvetanova & von Zastrow,

2014; Irannejad et al, 2017). We propose that NE accesses the

lumen of recycling endosomes (REs), which contain recycled as well

as newly synthesized AMPARs (Bowen et al, 2017), where it stimu-

lates the b2 ARs associated with AMPARs to trigger S845 phosphory-

lation (Fig 7). This phosphorylation then enhances insertion of

AMPARs into the cell surface through mechanisms that are currently

unknown. Consistent with this model, AKAP5 is targeted to RE via

its palmitoylation on Cys36 and Cys129 and disruption of this palmi-

toylation interferes with trafficking of REs and AMPARs (Keith et al,

2012; Woolfrey et al, 2015).

Analogous considerations apply to signaling by dopamine via the

Gs-coupled D1 and D5 receptors (D1/5R), which increase GluA1

surface expression in cultured PFC and hippocampal neurons (Sun

et al, 2005; Gao et al, 2006). Induction of chemical LTP with a

subthreshold concentration of glycine leads to synaptic AMPAR

incorporation if D1/5R activation with SKF81297 precedes the

glycine treatment (Sun et al, 2005; Gao et al, 2006). In the

hippocampal CA1 region, D1/5R stimulation also converts the induc-

tion of spike timing-dependent synaptic depression into potentiation

at certain time points (Brzosko et al, 2015).

Localized and dynamic signaling from the b2 AR to Cav1.2

Like AMPARs, Cav1.2 forms a complex that contains the b2 AR, Gs,

AC, and PKA for highly localized regulation via cAMP (Davare et al,

1999, 2001; Balijepalli et al, 2006) as well as the antagonistic phos-

phatases PP2A (Davare et al, 2000; Hall et al, 2006; Xu et al, 2010)

and PP2B, the latter anchored via AKAP5 (Oliveria et al, 2007;

Fig 6C). In cell-attached single-channel recordings, application of

the b2 AR-selective agonist albuterol results in a remarkably strong,

more than twofold increase in channel open probability when

applied inside the patch electrode but no increase at all when

applied to the outside of the electrode. Although in the latter case

> 99% of the cell surface and thereby the b2 ARs are agonist accessi-
ble, b2 AR stimulation does not allow the resulting cAMP, which is

produced throughout the cell except the small patch that is physi-

cally occluded by the electrode, to effectively reach the channels

under the patch (Chen-Izu et al, 2000; Davare et al, 2001). These

results suggest that cAMP signaling is limited to less than 200 nm.

The C-terminus of b2 AR directly binds to a small region of the

a11.2 C-terminus encompassing S1928 (Patriarchi et al, 2016;

Fig 6C). S1928 is the main phosphorylation site for PKA (De Jongh

et al, 1996), and its phosphorylation is increased in the brain in vivo

upon b AR stimulation in WT but not AKAP5 KO mice (Hall et al,

2007). Nevertheless, S1928A KI mice have perfectly normal b AR

regulation of Cav1.2 in the heart (Lemke et al, 2008). As it turns out,

phosphorylation of S1928 serves two different functions: It increases

channel activity in neurons (Patriarchi et al, 2016) and vascular

smooth muscle cells (Lemke et al, 2008; Patriarchi et al, 2016;

Nystoriak et al, 2017); at the same time, it displaces the b2 AR from

Cav1.2, which creates a refractory period of about 5 min during

which Cav1.2 cannot be re-phosphorylated upon its dephosphoryla-

tion and also not re-stimulated by b AR agonist application (Patri-

archi et al, 2016). A peptide that mimics the interaction site and

disrupts the b2 AR–Cav1.2 interaction prevents b AR stimulation of

Cav1.2 (Patriarchi et al, 2016), which is further evidence not only for

the requirement of b2 AR binding to Cav1.2 for channel regulation

but also for localized signaling by this cAMP-mediated mechanism.

Stimulation of the b2 AR induces its phosphorylation by GPCR

kinases (GRKs), leading to recruitment of b-arrestin and endocytosis

of the b2 AR (Shenoy & Lefkowitz, 2011; Staus et al, 2018). Does

the Cav1.2-associated b2 AR also undergo endocytosis? Obviously,

displacement of the b2 AR from Cav1.2 would create a situation

during which the b2 AR could easily be endocytosed although endo-

cytosis does not contribute to the refractory period of Cav1.2
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Figure 8. Role of upregulation of AMPAR and Cav1.2 activity by b2 AR–PKA signaling during PTT-LTP.
Basal phosphorylation of GluA1 on S845 and of S1928 in the Cav1.2 a11.2 subunit by PKA is low. b2 AR stimulation activates PKA via Gs, AC (not depicted), and cAMP. The
consequent phosphorylation of S845 increases Po of the AMPAR and AMPAR postsynaptic accumulation and thereby Na+ influx and depolarization during synaptic
transmission. S1928 phosphorylation renders Cav1.2 more sensitive to depolarization and increases Po of Cav1.2. The resulting increase in Ca2+ influx triggers via yet-to-be-
defined signaling pathways the potentiation in PTT-LTP.
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regulation by b2 AR stimulation (Patriarchi et al, 2016). Further-

more, most recent work now shows that GRKs phosphorylate only

b2 AR monomers while the b2 ARs in Cav1.2 complexes are dimers

and those dimers are only phosphorylated by PKA (Shen et al,

2018). The PKA phosphorylation sites are different from the GRK

sites. Only GRK- but not PKA-phosphorylated b2 ARs undergo endo-

cytosis (Shen et al, 2018) (see also Staus et al, 2018), suggesting

that Cav1.2-associated b2 ARs are not destined for endocytosis.

Finally, phosphorylation of not only Cav1.2 itself on S1928 but also

the b2 ARs on its PKA sites S261/S262 is required for upregulation

of Cav1.2 activity by b2 AR signaling (Shen et al, 2018).

Role of regulation of Cav1.2 by b2 AR signaling in PTT-LTP

As described above, LTP induced by a 3-min-long 5-Hz tetanus

requires the b2 AR and phosphorylation of the AMPAR subunit

GluA1 on S845 by PKA (Qian et al, 2012). That Cav1.2 also forms a

complex with b2 AR, which makes it a prime target for NE signaling,

raises the possibility that Cav1.2 stimulation by the b2 AR is also

required for PTT-LTP especially as Cav1.2 is co-localized with the b2
AR at postsynaptic sites (Davare et al, 2001). In fact, PTT-LTP was

only mildly if at all affected by NMDAR antagonists but completely

blocked by dihydropyridines (DHPs) that inhibit L-type channel

(Qian et al, 2017). Hippocampal slices from KI mice with a point

mutation that renders Cav1.2 insensitive to DHPs showed PTT-LTP

that was not affected by DHPs (Qian et al, 2017). Accordingly,

Cav1.2 is absolutely required for PTT-LTP. In fact, PTT-LTP was

completely absent in slices from S1928A KI mice (but not affected in

slices from S1700A KI mice) (Qian et al, 2017) and blocked by the

peptide that displaces the b2 AR from Cav1.2 (Patriarchi et al, 2016).

These results indicate that upregulation of both AMPAR and Cav1.2

activity by b2 AR–PKA signaling is essential for PTT-LTP (Fig 8).

PKA augments not only postsynaptic AMPAR recruitment (see

above) but also open probability of AMPARs (Banke et al, 2000),

which will amplify depolarization of postsynaptic sites. PKA will

not only increase open probability and thereby activity of Cav1.2

(Patriarchi et al, 2016) but also make Cav1.2 more sensitive to depo-

larization; i.e., Cav1.2 will open more readily for the same level of

depolarization upon its stimulation by PKA (Gray & Johnston, 1987;

Sculptoreanu et al, 1993). These multiple effects will most likely act

in a highly synergistic manner to drive the Ca2+ influx that is neces-

sary for PTT-LTP (Fig 8).

Role of CaMKII in regulation of postsynaptic
AMPAR localization

Activation of PKA and the phosphorylation of GluA1 on its PKA site

S845 is not always required for LTP (Lee et al, 2003, 2010; Lu et al,

2007; Granger et al, 2013) nor is it sufficient by itself to increase

postsynaptic AMPAR content in the hippocampal CA1 region (Este-

ban et al, 2003; Oh et al, 2006; Joiner et al, 2010) although PKA

activation does increase postsynaptic AMPAR strength in cultured

hippocampal neurons (Diering et al, 2014) and in PFC slices (Joiner

et al, 2010). LTP also requires Ca2+ influx and activation and

signaling by the Ca2+- and calmodulin-dependent protein kinase

CaMKII (Malenka et al, 1989; Malinow et al, 1989; Hayashi et al,

2000; Esteban et al, 2003; Gao et al, 2006; Halt et al, 2012; Huganir

& Nicoll, 2013; Hell, 2014; Herring & Nicoll, 2016). The role of PKA

in promoting surface expression of AMPARs paired with the require-

ment of CaMKII for LTP is best explained by a two-step model

(Fig 7) (Penn et al, 2017) (see also Opazo & Choquet, 2011, for a

similar three-step model): AMPARs are first targeted to perisynaptic

sites, and then, CaMKII induces trapping of AMPARs at the PSD

proper. Accordingly, postsynaptic AMPAR accumulation during LTP

requires exocytosis and subsequent lateral diffusion (Penn et al,

2017). Cross-linking of biotin-tagged AMPAR subunits at the cell

surface impaired LTP indicating that lateral diffusion of AMPARs in

the plasma membrane is required for LTP. A slowly developing

potentiation that was not blocked by cross-linking was prevented by

inhibition of Ca2+-triggered exocytosis. The central role of CaMKII

in governing postsynaptic AMPAR activity, presumably mostly

through promoting postsynaptic AMPAR accumulation, is also illus-

trated by the surprising recent finding that single-cell KO of
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Figure 9. Hypothetical postsynaptic AMPAR regulation and trapping by
CaMKII.
AMPARs reach the postsynaptic density by lateral diffusion. Ca2+ influx via the
NMDA receptor will lead to activation of CaMKII by Ca2+/CaM. The immediate
autophosphorylation on T286 causes binding of CaMKII to the GluN2B C-
terminus, which is important for phosphorylation of postsynaptic proteins (Halt
et al, 2012). Phosphorylation of GluA1 on S831 increases channel activity. The
Ca2+ influx also augments detachment of the TARP C-termini from the cytosolic
face of the plasma membrane, which are then phosphorylated by CaMKII.
Phosphorylation of either c2 or c8 will increase their binding to PSD-95 to trap
AMPARs. Recruitment of CaMKII to postsynaptic sites that are activated during
LTP is likely part of the mechanism that ensures synapse specificity of LTP (Hell,
2014).
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CaMKIIa, the most prevalent CaMKII in forebrain, or double KO of

CaMKIIa plus CaMKIIb reduces AMPAR EPSCs under otherwise

basal conditions by 50% and also NMDAR EPSCs by 30% and abro-

gated pairing-induced LTP (Incontro et al, 2018). Remarkably,

rescue of AMPAR EPSCs as well as LTP required not only CaMKIIa
that is catalytically active but also its binding to the NMDAR

GluN2B subunit (see the next paragraph).

A key difference between signaling by NE–b2 ARs–cAMP–PKA

and by CaMKII is that the former is based on predetermined co-loca-

lization and co-assembly of all components except for NE, which is

widely and diffusely released whereas CaMKII is evenly distributed

throughout the dendritic shaft (Strack & Hell et al, 2008). However,

stimulation of Ca2+ influx through postsynaptic NMDARs will lead

to recruitment of CaMKII to the stimulated spines as seen with

ectopically expressed GFP-CaMKII (Shen & Meyer, 1999; Otmakhov

et al, 2004; Rose et al, 2009) as well as endogenous CaMKII (Merrill

et al, 2005; Strack & Hell et al, 2008). This recruitment depends on

CaMKII binding to residues 1290-1310 in the C-terminus of GluN2B

(Strack & Colbran, 1998; Leonard et al, 1999; Bayer et al, 2001; Halt

et al, 2012).

LTP induced by multiple 1-s/100-Hz tetani does not require PKA.

It is possible that strong Ca2+ influx triggers AMPAR surface inser-

tion via synaptotagmin-1- and synaptotagmin-7-mediated acute

exocytosis (Wu et al, 2017). Alternatively, strong LTP induction

paradigms could activate CaMKII more so than weaker ones (e.g.,

two versus one 100-Hz tetanus in 8-week-old mice; Lu et al, 2007).

In this way, CaMKII could compensate for a lack of PKA signaling

by phosphorylating S831 in the C-terminus of GluA1. S831 is close

to S845 and is a prominent phosphorylation site for CaMKII (Roche

et al, 1996). Consistent with this hypothesis, LTP is lost in GluA1

S831A/S845A double KI mice (Lee et al, 2003) while it is normal in

single S831A and S845A KI mice (Lee et al, 2010). Hence, one site is

both sufficient and required for LTP. Perhaps trafficking of GluA1 to

the perisynaptic space can be stimulated by phosphorylation of

GluA1 on either S831 by CaMKII or S845 by PKA. In fact, CaMKII

can foster surface delivery of GluA1 (Gao et al, 2006).

Phosphorylation of TARPs by CaMKII

At the postsynaptic site, NMDAR-associated CaMKII acts locally to

phosphorylate AMPARs on S831 (Halt et al, 2012), which will

increase single-channel conductance of AMPARs (Kristensen et al,

2011) and might contribute to an increase in postsynaptic response

during LTP as LTP has been associated with an increase in single-

channel conductance (Benke et al, 1998) (Fig 9). Alternatively, this

increase could also be due to recruitment of GluA1 homomeric

AMPARs (Plant et al, 2006; Sanderson et al, 2016), which have a

higher conductance than GluA2-containing AMPARs (Traynelis

et al, 2010). However, no deficit in LTP has been found so far in

S831A KI mice indicating that S831 phosphorylation is not strictly

required (Lee et al, 2010). Rather, the main mechanism of LTP is a

persistent increase in postsynaptic AMPAR number, which could be

mediated by phosphorylation of the cytosolic C-termini of the

AMPAR auxiliary TARP subunits c2 (Tomita et al, 2005; Sumioka

et al, 2010; Hafner et al, 2015) or c8 (Park et al, 2016). These phos-

phorylations strengthen binding of c2 and c8 to PSD-95, thereby

trapping of AMPARs at postsynaptic sites (Chen et al, 2000; Schnell

et al, 2002; Elias et al, 2006, 2008; Schluter et al, 2006; Opazo et al,

2010; Hafner et al, 2015) (Fig 9). However, the apparent contradic-

tions between findings that specifically implicate CaMKII-mediated

phosphorylation of c2 (Tomita et al, 2005) versus c8 (Park et al,

2016) in LTP have to be addressed. There is also a disagreement

between recent studies that suggest either phosphorylation of c8 on

S277 and S281 but not PDZ anchoring (Park et al, 2016) or PDZ

anchoring of c8 but not S277 and S281 phosphorylation (Sheng

et al, 2018) is critical for LTP. The work by Park et al (2016) is

based on KI mice in which the CaMKII phosphorylation sites had

been eliminated and the work by Sheng et al (2018) on replacement

of all endogenous AMPARs with a GluA1–c8 fusion protein. Perhaps

fusing c8 to GluA1 leads to a conformation of the c8 C-terminus that

augments PSD-95 binding similar to the conformation that is

induced by CaMKII-mediated phosphorylation as shown for c2
(Sumioka et al, 2010; Hafner et al, 2015).

Phosphorylation of Kalirin and Trio by CaMKII

A second, increasingly prominent CaMKII target that is relevant for

LTP is Kalirin 7, a splice isoform of Kalirin (also called Duo). Kalirin

7 is a guanine nucleotide exchange factor (GEF) for the small G

protein Rac (Penzes et al, 2008). Activation of Rac by Kalirin 7

augments formation of F-actin via p21-activated kinase PAK and

thereby spine enragement as well as postsynaptic AMPAR accumu-

lation (Penzes et al, 2008). Ca2+ influx through NMDARs induces

phosphorylation of Kalirin 7 on S95 by CaMKII, which leads to acti-

vation of PAK, spine enlargement, and an increase in postsynaptic

AMPAR content (Xie et al, 2007). More recent work shows that

Kalirin 7 as well as the closely related Trio fulfills overlapping func-

tions with respect to synaptic maturation and LTP (Herring & Nicoll,

2016). The increase in postsynaptic AMPAR responses upon overex-

pression of either Kalirin 7 or Trio depended on basal spontaneous

synaptic activity; it was prevented by concurrent inhibition of

AMPARs and NMDARs. Knockdown (KD) of both proteins resulted

in an ~80% loss of spines and of synaptic transmission by both

AMPARs and NMDARs. These and earlier results indicate that these

two proteins together mediate spine and synapse maturation under

basal conditions (Xie et al, 2007; Herring & Nicoll, 2016). However,

KD of Kalirin was insufficient to impair LTP and KD of Trio had only

a modest effect. KD of both proteins abrogated synapse formation,

but synapse formation can be rescued by KD-resistant Kalirin 7,

which also rescued LTP. Importantly, rescue of LTP was not

achieved if the CaMKII phosphorylation site S95 had been mutated

to alanine. An analogous phosphorylation site is present in Trio,

and LTP was rescued by KD-resistant WT Trio but not phosphoryla-

tion-deficient T66A Trio (Herring & Nicoll, 2016). Thus, phosphory-

lation of one of these two Rac GEFs by CaMKII is a critical step in

LTP. Finally, mutations in the Rac GEF domain of Trio that have

been linked to autism spectrum disorders affect AMPAR function

(Sadybekov et al, 2017).

Emerging CaMKII targets in LTP: SynGAP and neuroligin-1

SynGAP is a Ras GTPase-activating protein; i.e., it terminates Ras

signaling by stimulating its hydrolysis of GTP to GDP (Carlisle
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et al, 2008). Ras in turn promotes postsynaptic delivery of

AMPARs (Zhu et al, 2002). Recent work now finds that CaMKII

phosphorylation of SynGAP leads to displacement of SynGAP from

the postsynaptic site, thereby fostering LTP (Araki et al, 2015;

Walkup et al, 2016).

Finally, the postsynaptic cell adhesion protein neuroligin-1 is

important for synapse formation by interacting with presynaptic

neurexin (Scheiffele et al, 2000). More recent work indicates that

phosphorylation of neuroligin-1 on T739 promotes synapse stabi-

lization and strength (Bemben et al, 2014).

Where PKA and CaMKII intersect

Given the prominence of PKA and CaMKII signaling at the postsy-

naptic site, it can be expected that signaling pathways by these

two kinases interconnect. In fact, PKA-mediated phosphorylation

of the NMDAR subunit GluN2B on S1166, which can be induced

by b2 AR stimulation, selectively increases Ca2+ permeability of

NMDARs (Skeberdis et al, 2006; Murphy et al, 2014a). This phos-

phorylation is important for induction of CaMKII-dependent LTP

by augmenting Ca2+ influx, which in turn is required for CaMKII

activation.

On the other hand, CaMKII might antagonize PKA signaling in

spines by phosphorylating AKAP5 on multiple serine and threonine

residues in its polybasic regions, including T87 and S92 in region B

(Fig 6A; Woolfrey et al, 2018). Interestingly, this phosphorylation is

inhibited by Ca2+/CaM binding to the polybasic regions and could

only proceed after CaMKII becomes constitutively active through its

autophosphorylation of T286 (Woolfrey et al, 2018). T286 phospho-

rylation results in Ca2+/CaM-independent so-called autonomous

CaMKII activity due to impaired rebinding of the autoinhibitory

domain to the catalytic domain upon removal of Ca2+/CaM from

this autoinhibitory domain (Hell, 2014). In addition, Ca2+/CaM had

to be removed from the polybasic AKAP5 regions before autono-

mously active CaMKII could phosphorylate this region. Function-

ally, phosphorylation of AKAP5 by CaMKII proved to be important

for removal of AKAP5 from spines (Woolfrey et al, 2018). This

removal required in addition depalmitoylation of AKAP5, which in

turn needed CaMKII activity. This complex mechanism is critical for

LTD induction during which cytosolic Ca2+ levels remain elevated

for some time before falling to resting levels. It is presumably during

this phase of Ca2+ removal and with it of Ca2+/CaM from AKAP5

that autonomously active CaMKII phosphorylates AKAP5. Although

the molecular consequences remain to be determined, the loss of

AKAP5 from spines upon this CaMKII-dependent phosphorylation

and depalmitoylation likely translates into a reduction of PKA and

thereby of PKA-mediated signaling in spines. The situation might be

more complicated as loss of AKAP5 would also translate into loss of

the phosphatase PP2B, which antagonizes postsynaptic PKA signal-

ing.

Conclusion

The intricacy of signaling mechanisms at the postsynaptic site and

of the underlying protein interactions we have unveiled so far is

truly mind-boggling. One wonders how much more complex the

whole postsynaptic signaling network will turn out to be. Postsy-

naptic signaling as it regulates postsynaptic AMPAR content and

thereby synaptic strength is functionally highly relevant because

changes in synaptic strength underly many forms of physiological

as well as pathological learning. If we are to truly understand post-

synaptic signaling and how it relates to synaptic strength in health

and disease, an important long-term goal, we need to keep digging

for years to come.
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